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Abstract

Recently, a model has been proposed which can quantitatively describe the
occurrence of quasi-periodic oscillations (QPOs) in the power spectra of accreting
black holes. The accretion disc is comprised of a thin outer disc, with a hot, thick,
inner accretion flow. The origin of the QPO is from the precession of this inner
flow, due to the Lens Thirring effect.

We analyse data from the X-ray source XTE J1550-564, taken during its 1998
outburst by the RXTE, to test this model. The power spectra and rms spectra
reveal that the source is transitioning from the low/hard state, into the very high
state, then down to an intermediate state. Phase lags are obtained from the cross-
spectra between 2-3 keV and 8-13 keV energy bands. Lags between hard and soft
photons can be explained by a propagating fluctuation model.

We calculate the frequency resolved spectrum for the source Cyg X-1 with
observation ID 10238-01-08-00 in the frequency bands 0.03-0.05 Hz, 4.5-6.8 Hz,
and 23-32 Hz. These reveal the Iron Ka line at ~ 6.4 keV, with a smeared
absorption edge, due to reflection in the disc. The high frequency bands are
harder, which agrees with the propagation model, and lack the reflection features,
which agrees with the truncated disc model.

We then calculate the frequency resolved spectra for the observations of XTE
J1550-564 around the QPO frequencies. We find that the QPO spectra can be
fitted to a Comptonisation model, and this is consistent with the Lens Thirring
model. Some produce poor fits, which may be due to reflection. The time averaged
spectra are fitted to a model of a blackbody component, a Compton component,
and a Gaussian. This fit has a very small blackbody component, and a Comp-
tonisation component which is much softer than the QPO spectrum. Improving
the model of the reflection features finds that there is a significant blackbody
component, and a Compton component which matches the QPO spectrum.
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1 Introduction

Black holes are one of the most fascinating types of object in the universe. Born during
the death of the most massive stars, black holes exhibit gravitational fields so strong
that any matter or light which wanders too close cannot escape. Black holes are hidden
behind an invisible boundary called the event horizon. Beyond this, the escape velocity
exceeds the speed of light, and thus it is impossible to see the singularity at the centre.
However, despite the name, it is theorised that black holes can emit radiation from the
event horizon, but this Hawking radiation has yet to be observed.

It is thought that all galaxies contain a supermassive black hole at their centre with
a mass millions of times the mass of the Sun. The most striking piece of evidence for
a supermassive black hole in the centre of our own galaxy is through observations of
stellar motions. The orbits of stars in the core of the galaxy imply that they are orbiting
an object with millions of solar masses in an area smaller than the solar system. The
only possible conclusion is that this is a black hole. The supermassive black hole in the
Milky Way is currently quiet, but if we look at more distant galaxies, we can see active
galaxies and quasars, where the supermassive black hole is consuming matter through
the process of accretion. These are some of the brightest and most energetic objects
in the universe. Accretion can also be seen on much smaller scales, with many stellar
mass black holes in binary systems where the black hole is stripping gas from a normal
star.

The physics of accretion flows is very complicated, with many physical processes
taking place, and not all are fully understood. Analysis of the light from many accreting
black holes reveal quasi-periodic oscillations (QPOs). These have been known about
for many years, but only recently has a quantitative description been proposed which
can explain their occurrence. In this project we will analyse data from the X-ray source
XTE J1550-564 in order to understand the QPOs and see how the data fits the current
models.

1.1 Accretion

Matter falling into a black hole will form into a flattened disc, called the accretion disc.
For material in the disc to fall into the black hole, it must lose angular momentum,
and therefore there must be a torque, since 7 = %. This torque arises from Keplerian
motion and disc viscosity. An object in a Keplerian orbit at a distance R from the
black hole will orbit with an angular frequency, w oc R~/?. Thus material farther from
the black hole will orbit more slowly than the material closer in. Viscosity leads to
shear stresses in the differentially rotating disc, which generates a torque (Shakura &
Sunyaev, 1973). Friction between different layers in the disc moving at different speeds
heats up the disc, and the disc is dense enough to thermalise the energy, it radiates as
a blackbody

Viscosity in the disc arises from a magneto-rotational instability (MRI) (Hawley,
Gammie & Balbus 1995). However, the physics can be simplified into a dimensionless



parameter, « < 1 (Shakura & Sunyaev, 1973), and the torque on the disc due to
viscosity is,

Toise = —3TVyiseaV GMr (1)

where Y is the surface density and r the radius of the disc, M the mass of the black
hole, and the viscosity, Vy;sc = aHc,, where H is the scale height and ¢, the sound speed
(Kolb 2010). A negative torque indicates a loss in angular momentum, and therefore
material will spiral into the black hole.

For an accreting black hole with a mass accretion rate of m, the rate of change
in potential energy as this mass spirals in from a distance R to R — dR is given by,

%—f = Lpot = G?{[deR However, from the Virial theorem, only half of this can be
radiated,
GMm
dL,eg = ——dR 2
1T IR @)

If the energy is radiated as a blackbody, then

dL = dAogpT* (3)

where T' is temperature, ogp is the Stephan-Boltzmann constant, and the area is the
area of an annulus (with top and bottom) dA = 2 x 27 R x dR. By equating equations
2 and 3, we find that,

GMm

3 (4)
8TR
This derivation does not take into account angular momentum, which produces

O'SBT4 =

an extra factor of 3 (1 — /Rin/ R), where R;, is the inner radius of the accretion disc
(Shakura & Sunyaev, 1973). The closest Ry, can be to the black hole is at the innermost
stable circular orbit (ISCO). For a Schwarzschild (non-rotating) black hole, the ISCO
is at a distance of 6GM/c?, or 3R, where R, = 2GM/c? is the Schwarzschild radius
(the radius of the event horizon). If the black hole is more massive, then the ISCO is
larger, and thus, from equation 4 the accretion disc radiates at a lower temperature.
For stellar mass black holes, this radiation is predominantly emitted in the X-ray region
of the spectrum, while for much larger supermassive black holes, it is in the ultra-violet.

1.2 Spectra of Binary Black Hole Systems

The spectrum of a source often follows a power law, N(E) = NgE~', where N(E) is
the differential photon number density (the number of photons per second per square
cm per energy band), and I' is the photon index. The energy flux, F(E) = EN(F) =
NoE~T=) = NyE~, where a = I' — 1 is the energy index (Done 2010). Typically, a
spectrum spans many orders of magnitude in energy, and thus is plotted logarithmically.
The total energy per bin is given by F(E)dE = EF(E)dE/E = EF(FE)dlog E, and
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Figure 1: Left: spectra of the source GRO J1655-40, showing the low/hard state (blue)
with a weak disc and strong hard power law, the high/soft state (red and green) with
a strong disc and weak, soft, power law, and the very high state (black) with both a
strong disc and strong soft power law tail. Right: diagram showing how the size and
strengths of the different components produce the spectral states. The outer disc is
shown in orange, with the inner hot flow in blue. Other processes such as jets and
winds can also occur. (Figure from DGKOT)

therefore we plot log EF(E) against log E, rather than simply log F(F). If T' < 2, the
spectrum peaks at high energy, and is referred to as hard, while if I' > 2, the spectrum
peaks at low energies, and is referred to as soft.

Many accreting black holes in binary systems show a spectrum consisting of a black-
body component from the disc, plus a power law tail. Over time, the strengths of these
components change to produce several distinct spectral states. Sources with low lumi-
nosities are typically seen with a spectrum dominated by a hard (I" < 2) power law tail.
This is called the low/hard state. When a source brightens, it moves into an interme-
diate state, where there is an increase in the disc component, and a softer tail (I" ~ 2).
At even higher luminosities, the source can retain a strong tail (I' ~ 2.5) in addition to
a strong disc component (very high state), or the disc dominates with a very weak tail
(I' ~ 2.2) in the high/soft state (Done, Gierliniski & Kubota 2007, hereafter DGKO07)
(figure 1a).

The various spectral states can be described by a truncated disc model. The outer
part of the disc is cool, geometrically thin and optically thick, down to a truncation
radius. Within this is an advection dominated accretion flow (ADAF) which is hot,
geometrically thick and optically thin, down to the last stable orbit. The inner flow pro-
duces the power law through Compton up-scattering. Compton scattering is an energy
exchange process between an electron and a photon. In Compton (down-)scattering,
the electron recoils, gaining energy from the photon, while in Compton up-scattering
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Figure 2: Figure showing how adding together many blackbody spectra can produce
a power law spectrum. The spectrum of the seed photons is in red, while the total
spectrum, in green, follows a power law, but drops off at high and low energies. (Figure
from Done 2010)

(inverse Compton scattering), the photons gain energy from the electrons. Seed pho-
tons from the disc enter the hot flow, and are up-scattered by hot electrons. Initially,
the seed photons follow a blackbody spectrum. If all the photons scatter once, the
scattered photons will retain a blackbody spectrum, but shifted to a higher energy.
These scattered photons can then go on to be scattered again, multiple times, and each
time gaining more energy (up to the limit of the energy of the electrons), and each time
producing a blackbody spectrum shifted to higher energies. Combining these black-
body spectra together produces the power law spectrum (see figure 2). The slope of
this power law depends on both the temperature of the electrons and the optical depth
(Done 2010).

Transitions between the spectral states can be explained by moving the truncation
radius (DGKO7). When the truncation radius is large, the inner hot flow is large, and
dominates the spectrum. As the truncation radius decreases, the inner flow gets smaller,
and there can be an overlap with the outer disc. This overlap means that more seed
photons from the outer disc are intercepted by the inner flow, and are up-scattered,
resulting in the cooling of the inner flow, and a softer power law (figure 1b).

1.3 Variability

X-ray sources are intrinsically variable on much shorter timescales than their spectral
evolution. A satellite observing an X-ray source will sample the source in evenly spaced
time bins, creating a plot of count rate (number of photons detected per second) against
time, called a light curve. A mathematical function can be decomposed into a series of
sine waves of different frequencies. By taking a Fourier transform, the contribution to
the function from each frequency can be determined (see section 2). Taking the Fourier
transform of a light curve, and squaring it, gives the power spectrum. The power
spectra of X-ray sources display the same basic shape. At low frequencies, the power
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Figure 3: Left: sketch of a typical power spectrum, with power x frequency plotted
against frequency, showing the low frequency break, f;,, high frequency break, f,, and
a quasi-periodic oscillation (QPO) which often follows a Lorentzian. Both axes are
logarithmic. Right: Power spectra of the source XTE J1550-564 during a transition.
As the spectrum softens, the power spectra become narrower, while the power at high

frequency stays fairly constant. (Figure from DGKO07)

spectrum, P(v), is constant (ie proportional to ©°). As the frequency increases, there
is a low frequency break, 1, and P(v) oc v~ up to a high frequency break, v, beyond
which P(v) oc 72 (figure 3a). For a typical source in the low/hard state, v, ~ 0.1 Hz,
and v, ~ 10 Hz.

During a transition, v, remains roughly constant. However, 1, can vary. As the
source transitions from the low/hard to high/soft state, v, increases, causing the power
spectrum to narrow (figure 3b). This can also be explained by a truncated disc model.
As the truncation radius moves inwards, its characteristic timescales decrease. Fluctu-
ations at this radius propagate inwards through the hot flow, down to the last stable
orbit. Fluctuations with a frequency greater than the characteristic frequency of the
last stable orbit are damped, and the highest frequency remains constant. (DGKO07)

The MRI is the physical origin of the disc viscosity. The MRI is variable, and
produces large fluctuations in all quantities (Krolik & Hawley 2002). Fluctuations
in viscosity will result in fluctuations in the mass accretion rate and this causes the
variability seen in the power spectrum.

1.4 Quasi-Periodic Oscillations

Sources often display a narrow peak in the power spectrum between the low and high
frequency breaks. This peak often follows a Lorentzian, and is seen at low frequencies
in the low/hard state, increasing in frequency through the intermediate state up to the
very high state, where it is strongest, at a frequency 6 - 10 Hz (Ingram, Done & Fragile
2009). This is called a quasi-periodic oscillation (QPO). This is often accompanied by a
second smaller peak at a higher frequency (the second harmonic), or at a lower frequency



Figure 4: Diagram showing the geometry of the accretion disc. The angular momentum
vector of the inner hot flow (blue arrow) is misaligned with the angular momentum of
the black hole (black arrow), causing the inner flow (grey) to process, while the outer
part of the disc (red) remains in its initial alignment. (Diagram from Ingram, Done &
Fragile 2009)

(sub-harmonic), or sometimes both. QPOs are weak or non-existent in the high/soft
state.

QPOs have been known about for many decades, but until recently, there were no
quantitative models which could explain them. Potential models fell into two categories:
misalignment of the black hole spin and accretion flow, and wave modes of the accretion
flow. However, this second category has now been ruled out, since fluctuations caused
by the MRI would destroy any coherent wave modes in the flow (Henisey et. al. 2009).

The current best explanation for the occurrence of QPOs is Lens-Thirring precession
of the inner hot flow (Ingram & Done 2011). The black hole and hot flow are both
spinning, but their angular momentum vectors are misaligned (figure 4). This causes
the precession of the hot flow due to relativistic frame dragging. Numerical simulations
have calculated QPO frequencies which match observed frequencies (Fragile et al 2007).

The truncated disc model also explains the shift in frequency of the QPO as a source
moves into a different spectral state. The precession frequency is dependent on the size
of the flow (Fragile et al 2007). If the flow is large, the frequency is small. In the
low /hard state, the inner flow is large, and thus a QPO is seen at low frequencies. In
the very high state, the inner flow gets smaller, so the QPO frequency increases. In
the low /hard state, the inner flow is very small or non-existent, and thus a QPO is not
seen.

1.5 Reflection & Absorption

Depending on the geometry of the disc, photons emitted by the inner hot flow can
illuminate the outer cool disc, leading to absorption features in the X-ray spectrum.
The most prominent feature is the fluorescent iron Ko line at 6.4-6.7 keV (depending
on the ionisation state), with a smeared absorption edge at ~7.1 keV (Basko, Sunyaev
& Titarchuk, 1974). Iron atoms absorb a photon which ejects an electron from the
inner K-shell. This is then filled by the transition of an outer electron, producing this
characteristic emission line. The Ko line is intrinsically narrow. However, effects such



as Doppler shifts, relativistic beaming and gravitational redshift lead to the broadening
of the line.

When the system is in the high/soft state, the inner flow is small, and there can be
a large overlap between the two components of the disc. This should lead to stronger
reflection features than the low/hard state, where the truncation radius as large, and
there is little overlap. As the inner flow precesses, it moves out of, then back into
alignment with the outer disc. When the flow is out of alignment, a large area of the
disc will be illuminated, leading to strong reflection features. When both components
are in alignment, a much smaller number of photons illuminate the disc, and a lot less
reflection will occur.

2 Fourier Techniques

2.1 The Fourier Transform

For an infinite, continuous function, the Fourier transform (FT), and its inverse, are
defined respectively as,

o0

X(v) = / z(t)e?mvtdt (5)
() = / X (v)e 2t dy (6)

However, in reality, a light curve is not a continuous function, but is discretely
sampled in evenly spaced time bins. For a light curve of total duration 7', split into N
bins of time §t = T'/N, the discrete Fourier transform (DFT) is defined as,

N-1
X(Vj) _ Z xk€2m'jk/N (7>
k=0
where x;, is the number of photons detected in bink, and v; = 5/T (j =0, 1, ... ). The
frequency increases in steps of dv = 1/7" up to a maximum frequency, vy/ = %N /T,
called the Nyquist frequency, which is equal to half the sampling frequency (1/07).

The DFT of a time series can be computed easily using a fast Fourier transform
(FFT) algorithm.

2.2 The Power Spectrum

Parseval’s theorem states,

INEOIRE 7\X<u>12du (8)
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Figure 5: Left: normalised power spectrum of the source XTE J1550-564 before re-
binning. Error bars are omitted for clarity. Right: the same power spectrum after
rebinning, with 20 bins per decade. In both plots, the white noise has not been sub-
tracted.

that is, the total energy of a signal is equal to the area under the square of the Fourier
transform. The power spectral density (PSD) is defined as | X (v)|?.

P(v;) = A|X (1) (9)

where A is the chosen normalisation (see section 2.2.1)

Generally, the power spectrum spans several orders of magnitude in frequency, thus
it is plotted logarithmically. In each frequency bin, the total variability is P(v)dv =
P(v)vdv/v = vP(v)dlogv. Therefore vP(v) is plotted, rather than simply P(v) (Done
2010). Since the frequency bins are evenly spaced, on a logarithmic power spectrum,
points at high frequency become squashed together, and so power spectra plotted on
logarithmic axes need to be smoothed. The simplest way to do this is to rebin the
power spectrum in evenly space logarithmic bins, averaging together all the values in
each bin (figure 5).

2.2.1 Normalisation

We normalise the power spectrum such that,

/P(l/)dV = (Z))Q (10)

where 02 = & (I — Iy)? is the variance, and I the mean count rate. This normalises
the power spectrum such that it is in units of square fractional rms. This choice of
normalisation means that integrating P(r) over a certain frequency range gives the rms
fractional variability (Done 2010).

10
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Figure 6: Left: Power spectrum as in Figure 5 (blue), with the white noise level (green).
Right: the same power spectrum after white noise subtraction.

2.2.2 Noise

At high frequencies, the power spectrum becomes dominated by white noise. This noise
is produced by the detector. Since the detector is counting small numbers of photons
in each time bin, this white noise follows Poisson statistics. The power of the white
noise is constant and independent of frequency, and thus dominates where the signal is
at its lowest. If the noise is not removed, v P(v) increases at high frequencies.

One way to correct the noise is to simply calculate the average power at high fre-
quencies, where noise dominates, and then subtract this from every point in the power
spectrum.

Another way to remove white noise, which we will use, is to generate random num-
bers. The total light curve, I(t) = I(t) — Ipga(t), where I,,.(t) is the count rate from
the source, and I4(t) is the background count rate. Ig..(t) and Ipzq(t) both follow
Poisson statistics, but () does not. The source and background count rates are con-
verted into numbers of photons by dividing by the width of the time bin, and the mean
number of photons per bin, (N)_ . and (N), g are calculated. For the source, a random
number, which follows a Poisson distribution, is generated with mean = variance =
(N),,., and a random number for the background is generated with mean = variance =
(N)pgq- These are then added together and converted back into a count rate, creating a
new light curve. The power spectrum of this, P,.;s.(V), gives the white noise level of the

power spectrum, and is subtracted to give the white noise corrected power spectrum,
P (V) = P(V) — Pooise(v) (figure 6).

2.3 The Rms Spectrum & Frequency Resolved Spectroscopy

The lightcurve produced by a satellite can be split into different energy bands. In
general, the power spectra obtained from each energy band is different. This variation
as a function of energy can be shown in an rms (root-mean-square) spectrum (figure 7).
The power spectrum is normalised such that integrating over a frequency range gives

11
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Figure 7: Left: Normalised, white noise subtracted power spectra at energies of 3 keV
(blue) and 11 keV (green). The green power spectrum is shifted up, showing that there
is more variability at this energy. Right: The rms spectrum, which shows the fractional
variability as a function of energy.

the square fractional variability. Rms spectra are constructed from,

r(E) = \//: P(v, E)dv (11)

We can also construct the frequency resolved spectrum,

S(E) = R(E)r(E) (12)
where R(F) is the average count rate (Revnivtsev et al, 1999).

2.4 The Cross-Spectrum

In general, the Fourier transform of a light curve, I(t), is a complex function, L(v) =
|L(v)|exp(i®(v)), where ® is a frequency-dependent complex phase. This phase infor-
mation is lost in the power spectrum. P(v) = L*(v)L(v) = |L(v)|* exp(—i®(v) +
id(v)) = |L(v)]>. This phase information can be retained by computing a cross-
spectrum.

The cross-correlation of two time series, s(t) and h(t) is defined as,

sxh = /jo s(T)h(t + 7)dr (13)

The Fourier transform of the cross-correlation, F(sx h), is equal to the product of
the FT of one of the time series, multiplied by the complex conjugate of the other,

F(s*h) = H*(1)S(v) (14)

The cross-spectrum is defined as the Fourier transform of the cross-correlation,
C(v) = F(s*h). The Fourier transform of both light curves contains a complex phase,

12
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respectively.

and therefore C'(v) = |H (v)|exp(—i® g (v)) |S(v)|exp(i®s(v)) = |H(v)| |S(v)| exp(i(Ps—
Q) = |H(v)||S(v)|exp(iA), where we define the phase difference A = &g — O .
By analogy to the power spectrum, the cross-spectrum is normalised such that,

feon=(2)(2)

where o, and o, are the standard deviations of the two time series, and Ay and sg
are their means. The phase lag, A(v), is the complex argument of the cross-spectrum,
which is independent of the normalisation. This can be converted into a time-lag by
dividing by 27v.

3 Data Analysis

3.1 Rossi X-ray Timing Explorer (RXTE)

The Rossi X-ray Timing Explorer (RXTE) was a NASA satellite designed to study
high energy astronomical X-ray sources, such as black holes and neutron stars, through
their X-ray timing properties. The satellite was launched in December 1995, and was
in operation for 16 years, before finally being decommissioned in January 2012.

The RXTE consists of three instruments. The All Sky Monitor (ASM) consists
of three wide angle cameras, which scan 80% of the sky each orbit, allowing new
phenomena to be detected quickly. The Proportional Counter Array (PCA) consists
of 5 proportional counters with an energy range of 2 - 60 keV. The High Energy X-
ray Timing Experiment (HEXTE) is composed of 2 clusters of phoswich scintillation
detectors, and has an energy range of 15 - 250 keV.

13



3.1.1 Data Extraction

We downloaded publically available RXTE data which was taken using the PCA. Light
curves were obtained for each energy bin from the data in binned mode, using the
standard FTOOLS software. Background estimates were created, and subtracted from
the source light curves. A program was written in Python to compute the PSDs, rms
spectra, cross spectra and lags from these light curves.

3.1.2 Dead Time

The PCA detectors consist of layers of Xenon. As an incident X-ray photon enters
the detector, it is detected by ionising the Xenon, which will then recombine ready
for another detection. However, there is a small period of time before the Xenon
recombines, during which an incident photon cannot be detected. This is called the
dead time, and results in the PCA producing a smaller count rate than there actually
is. The dead time can be corrected for, as described in Revivtsev, Gilfanov & Churazov,
2000. However, dead time is only important for the brightest X-ray sources. Hereafter
we assume that dead time effects are negligible and will not correct for them.

3.2 XTE J1550-564

XTE J1550-564 is an X-ray nova and black hole candidate that was discovered using
RXTE’s ASM. The source underwent a bright outburst between September 1998 and
May 1999. During this outburst, detailed observations were made by RXTE. We use
data taken from this outburst, in September 1998, with observation IDs 30188-06-01-00
up to 30188-06-11-00 The observation 30188-06-02-00 is omitted because there was no
data in the binned data mode. In addition, we use data with observation ID 30191-01-
01-00, and every fifth observation from 30188-06-05-00 up to 30188-06-30-00. Hereafter
we will number these observations from 1 to 18, as shown in table 1.

To calculate power spectrum of each light curve, the light curve is first split into
128 s sections. Any sections with gaps in the data are rejected. These gaps are where
the satellite is not pointed at the source, and there is no way to interpolate the data.
Power spectra are then computed for each section, using the Numpy FFT algorithm,
and are then averaged together to obtain the total PSD (figure 9). Averaging together
many power spectra is done, rather than calculating one single PSD using the whole set
of data, as it reduces the errors. It also reduces the time taken to compute the PSD, as
the time required to calculate the FFT of a set of data is proportional to N log N, where
N is the number of data points (van der Klis, 1988). White noise is then subtracted,
and the PSD is rebinned as described in section 2. Sometimes, after subtracting white
noise, some of the points in the PSD are negative, which is a problem when plotting
logarithmically. This is dealt with by setting these points to an arbitrary small positive
value. Errors for such points are very large.

Rms spectra are obtained by firstly computing the power spectra in each energy
band for each observation. Each PSD is integrated over the QPO frequency (FWHM)

14
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Figure 9: A selection of power spectra of XTE J1550-564. Top row: observation num-
bers 3 (left) and 7 (right). Bottom row: numbers 12 (left) and 13 (right).
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’ Number \ Observation ID Data Mode \ QPO Freq (Hz) ‘
1 30188-06-01-00 | B 4ms 8A 0 35 O 0.22-0.45
3 30188-06-03-00 | B_Sms_16A 0 35 H 4P|  0.09-0.16
4 30188-06-04-00 | B _4ms 8A 0 35 O 1.2-2.0
5 30188-06-05-00 | B 4ms SA 0 35 H 2.0-3.5
6 30188-06-06-00 B 4ms 8A 0 35 H 2.5-5.0
7 30188-06-07-00 B 4ms 8A 0 35 H 2.5-4.5
8 30188-06-08-00 | B _4ms 8A 0 35 O 2.5-4.5
9 30188-06-09-00 | B _4ms 8A 0 35 O 2.85.0
10 | 30188-06-10-00 | B 4ms 8A 0 35 O 2.0-3.5
11 | 30188-06-11-00 | B 4ms 8A 0 35 O 3.0-5.6
12 | 30191-01-01-00 | B _4ms 8A 0 35 H 4.5-8.0
13 | 30191-01-05-00 | B 4ms 8B 0 _49 H 8.0-11.0
14 | 30191-01-10-00 | B_Sms 16A 0 49 H 3345
15 | 30101-01-15-00 | B _4ms 8A 0 35 O 3.5-5.0
16 | 30101-01-20-00 | B 4ms 8A 0 35 O 2.5-3.6
17 | 30101-01-25-00 | B 4ms 8A 0 35 O 3.8-5.0
18 | 30101-01-30-00 | B 4ms 8A 0 35 O 5.5-8.0

Table 1: The observation IDs, data modes and QPO frequencies of the observations of
XTE J1550-564

using the Scipy Simpsons algorithm. Channel numbers were converted to energies using
the energy-channel conversion table, which is available online! (figure 10).

Cross spectra were computed in the same way as the power spectra, with the light
curves split into 128 s sections, discarding any with gaps, and calculating the average
normalised cross spectrum. As with the PSDs, we plot frequency X cross spectrum.
There is no need to correct for the white noise when using cross spectral techniques.
Both light curves contain noise, but this is uncorrelated between the two energy bands.
The cross spectrum, which is the Fourier transform of the cross correlation only shows
the correlated signal between the two energy bands. Since the white noise in uncorre-
lated, it cancels out.

Phase and time lags were then obtained from cross spectra between the 2-3 keV and
8-13 keV energy bands (figure 11). For observation 7, we also used some data which
went to higher energies, and calculated the phase lag between the 2-13 keV and 13-16
keV energy bands (figure 8). The phase lag was calculated between this hard band and
all the softer energy bands, and were then averaged together to reduce the errors.

Thttp://heasarc.nasa.gov/docs/xte/e-c_table e03v04.html

16



Phase lag (rad)
|
Phase lag (rad)

:imf\”’

-0.2

|
=
o

- _OAlsog[ Fre(;ﬁency (HMS 1 B - _o'lsog[ Freqoifency (HzO)S] "
Figure 11: Phase lags between the 2-3 keV and 8-13 keV energy bands for observations

1 (left) and 11 (right). The frequency of the QPO and harmonic are indicated by the
red and green lines respectively.

log[ Time Lag (s) ]

|
v

-1.0 —0.5 0.0 0.5 1.0

log[ Frequency (Hz) ]

Figure 12: Time lag of observation 7.

17



data/medel

08

RXTE /PCA Cyg
T T

~0.03-0.05 Hz

;ﬁ - 4 ++++_¢_++ + ++++++-__+’ RS I 4 ‘+¢ +

06

LR .
~4.5-6.8 He Hhaas +o
Ti_‘|‘—|—4—|-_|_—l—|——|— e

-

ratio
0.4

- ’ 1
| 1 .o [ =
_~|—+77 —+ E 0.8 L - «* L) i

0.2
2
&
2
=
5
i
3
.
-
—
i
o
&
+

5 10
Energy (keV) 0.4
N
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bands 0.03-0.05 Hz (black), 4.5-6.8 Hz (red) and 23-32 Hz (green) with a power law
model of index 1.8. Right: the same plot as shown in Revnivtest, Gilfanov & Churazov
1999.

3.3 Frequency Resolved Spectroscopy

Cyg X-1 is an X-ray binary system, and the brightest X-ray source in the constel-
lation of Cygnus. Using data with observation ID 10238-01-08-00, in data mode
B _4ms 8A 0 35 H, we extract the light curves for each energy, compute the PSDs,
and hence calculate the frequency resolved spectrum in the frequency bands 0.03-0.05
Hz, 4.5-6.8 Hz and 23-32 Hz, as shown in Revnivtsev, Gilfanov & Churazov, 1999. The
frequency resolved spectra are plotted in XSPEC. We compare our results to make sure
our program is working correctly (figure 13).

We then calculate the frequency resolved spectrum of XTE J1550-564, using the
same observations as previously. For each observation, we integrate the power spectra
over the QPO frequency, where the upper and lower limits are determined from the
full width at half maximum (FWHM). The QPO frequencies are summarised in table
1. For each observation, the time averaged spectrum is opened in XSPEC, and data
below 3 keV and above 20 keV is ignored. This is fit to the model TBABSx (DISKBB
+ REFLECTXNTHCOMP + GAUSSIAN), where TBABS calculates the absorption from
the ISM, DISKBB is the blackbody component from the disc, REFLECT models the
reflection from neutral material, NTHCOMP is a thermally Comptonised continuum,
and GAUSSIAN is a Gaussian, used to model the relativistically broadened Iron Ko
emission line. The QPO spectrum is then imported into XSPEC, and data below 3 keV
and above 13 keV is ignored. The fit is then renormalised and fit to the QPO spectrum,
with all the shape parameters frozen. The QPO spectrum is then also fit to a simple
model of TBABSXNTHCOMP. These fits for observations 1 and 7 are shown in figures
14 and 15.
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Figure 14: Fits to observation 1. Top left: Fit to the time averaged spectrum. The
upper dashed line is the Compton component, and the lower dashed line is the rela-
tivistically broadened Iron K« line, modelled as a Gaussian. Top right: Fit to the QPO
spectrum. The shape parameters of the fit to the total spectrum have been frozen, and
then be renormalised for the QPO spectrum. Bottom left: Fit to the QPO spectrum
after the Gaussian normalisation has been set to zero. Bottom right: Fit to the QPO
spectrum consisting of only the Comptonisation component.
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4 Discussion

All observations of XTE J1550-564 show strong QPOs in the PSDs, and most show the
second harmonic (figure 9). In the later observations, the sub harmonic can also be
seen. Observations 1 and 3 have the lowest frequency QPOs, of a few tenths of a Hz.
This increases to a maximum frequency of ~10 Hz for observation 13. The rms spectra
of observations 4 to 18 are all increasing as a function of energy, whereas the rms spectra
of observations 1 and 3 are flat (figure 10). An increase in fractional variability with
energy is typically seen in the high/soft and very high states, while decreasing or flat
rms spectra are seen in the low/hard state (Gierlinski & Zdziarski, 2005). Since QPOs
are not observed in the high/soft state, this data is showing that the source is making
a transition from the low/hard state, through an intermediate state into the very high
state, then back into the intermediate state. The behaviour of the rms spectrum can
be described well by Comptonisation in the two-component accretion disc (Gierliniski
& Zdziarski, 2005).

The shapes of the cross spectra are very similar to the PSDs, displaying a strong
peak at the QPO frequency and also its second harmonic. The phase and time lags are
plotted between 0.1 and 10 Hz, where the errors are smallest. Positive lags represent a
hard lag where the hard (high energy) photons are lagging the soft (low energy photons).
Conversely, negative phase lags represent the soft photons lagging hard photons. The
phase lags between the 2-3 keV and 8-13 keV show for observation 1 hard lags peaking
at ~2 Hz, with soft lags at low and high frequencies. As the QPO frequency increases,
the lags become more complicated. The lags for observation 11 show hard lags at low
frequency, with low lags at high frequency, but there are hard lags at the QPO and
harmonic (figure 11). The phase lag for observation 7 between the 2-13 keV and 13-16
keV band is a similar shape (figure 8). This shape has been seen in the phase lags of
other sources (Reig et al, 2000).

The occurrence of lags between hard and soft photons is very complicated. One
might assume that the hard lags are simply produced from the Comptonisation in the
inner flow. As cool seed photons enter the hot flow, they are up-scattered, gaining
energy each time. This means that the hard photons have spent more time in the
Comptonising region, and therefore lag the softer photons. However, the time lags
show that at low frequency, the lags are of the order of 0.1 seconds (figure 12). This
would require a large extended corona a few light seconds across (Ciu, 1999). This is
too large to produce the observed high frequency variability.

The models which can explain the hard lags in a much smaller Comptonising region
involve the propagation of fluctuations in the accretion flow (Kotov, Churazov & Gil-
fanov, 2001). Low frequency fluctuation are produced far from the black hole. These
fluctuation then propagate inwards, to smaller radii, where the higher frequency fluctu-
ations are produced. As the fluctuations propagate inwards, the photons gain energy,
so hard photons are emitted close to the black hole, and soft photons farther out.
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4.1 Frequency Resolved Spectroscopy
4.1.1 Cyg X-1

The frequency resolved spectrum of Cyg X-1 in the 30-50 Hz frequency band shows a
peak at ~6.4 keV, which is the Iron Ko line. Above this energy is a broad absorption
edge (figure 13). The peak from the Iron line can also be seen in the 4.5 - 6.8 Hz range.
Between 23 and 32 Hz, no reflection features are seen. The errors in the power spectra
are large due to white noise, and thus the frequency resolved spectrum in this range
has large errors. In general, the errors for all the spectra are large in comparison to the
plot from Revnivtsev, Gilfanov & Churazov, 1999. This is due to the fact that only
one observation was used. More data would decrease the errors. At high frequencies,
the spectra are harder. This is as expected from the propagation model, where the
high frequencies are produced close to the black hole where hard photons are emitted,
and low frequencies are produced far out where the emitted photons are soft. At these
large distances from the black hole, photons from the inner flow can illuminate the disc,
producing the reflection features. Close to the black hole, inside the hot flow, there is
no reflection.

Another way to reduce the errors in the frequency resolved spectra, other than
using more data, would be to use cross-spectral techniques. This would remove the
uncorrelated signal from the white noise, and reduce the errors, especially at high
frequencies where the noise is large.

4.1.2 XTE J1550-564

The fits to the time averaged spectra of XTE J1550-564 show that the spectra are
dominated by the power law from Comptonisation, with a strong, broad emission line
at 6.7 keV (figures 14 and 15). The fits are then renormalised over the QPO spectrum,
keeping the shape parameters frozen, and we find that they produce a bad fit, with too
much reflection. Setting the normalisation of the blackbody and Gaussian components
to zero produces reasonable fits to the QPO spectra in observations 1 and 3, but for
the rest of the observations, the QPO spectrum is significantly harder.

Fitting only the Compton component straight to the QPO spectrum provides a good
fit. This is showing that the inner part of the accretion flow where the QPO is produced
has only a Compton spectrum, with no blackbody component, and no reflection. This
supports the idea of Lens Thirring precession producing the QPO. As the inner flow
precesses, a different projected area is observed, and so the spectrum of the QPO, which
is a Compton spectrum, is modulating at the QPO frequency, and only this is seen in
the QPO spectrum.

If we consider a geometry where the inner hot flow and the outer disc are misaligned,
with the outer disc aligned with the spin of the black hole, then as the inner flow
precesses, the area of the disc illuminated remains constant. Therefore the amount of
reflection will be constant. However, if the inner flow and outer disc are initially aligned,
then as the flow precesses, they will continuously move into and out of alignment. In
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| Number | T (total) | T (QPO) [ x* (QPO) |
1 1.70+0.04 | 1.72+0.08 0.059
3 1.766 = 0.003 | 1.7+ 0.3 0.381
4 2.120 £0.002 | 1.65 £ 0.04 0.33
) 2.336 £0.003 | 1.71 £ 0.03 0.907
6 2.565 £0.003 | 1.71 £0.03 0.908
7 2.545£0.002 | 1.71 £0.04 0.542
8 2.533+0.002 | 1.71 £ 0.05 0.28
9 2.644 +0.003 | 1.72 £ 0.04 0.085
10 2.392 £ 0.003 | 1.69 £ 0.06 0.504
11 2.721 £0.003 | 1.70 £ 0.05 0.14
12 2.968 £ 0.005 | 1.66 £ 0.02 0.708
13 3.302 £0.003 | 1.53 £0.02 9.389
14 2.717£0.003 | 1.79 £ 0.02 2.906
15 2.792 4+ 0.004 | 1.66 £ 0.03 0.602
16 2.560 £ 0.005 | 1.66 £ 0.03 0.682
17 2.795£0.006 | 1.00 £0.05 | 683.813
18 3.018 £ 0.005 | 1.00 £ 0.09 198.42

Table 2: Comparison of I' for the fits to the total and QPO spectra, and the reduced
x? values for the fits to the QPO spectra.

this situation, the area of the disc being illuminated is varying, and thus the reflection
component of the spectrum is modulating at the QPO frequency. In this geometry, the
QPO spectrum would contain a reflection component. However, in general the amount
that the illuminated area changes is small, and would be difficult to observe.

Most of the fits to the QPO spectra have values of reduced x? < 1 (table 2). This
shows that the Compton spectrum fits the data well, but either the uncertainties in the
QPO spectra have been overestimated, or the model is over-fitting the data. The fits
would be improved by having data with a finer energy resolution, extending to higher
energy. However, observations 17 and 18 have y? > 1, indicating that the Compton
model is a very poor fit. This may be due to reflection, but there are too few data
points in the QPO spectrum to constrain the parameters in a more complicated model.

The total spectra have very small statistical errors, making the reduced x? values
meaningless. For observation 11, a systematic uncertainty of 1% is applied, which gives
a meaningful y? value of 0.407. The model does fit the total spectra, but these spectra
are softer than the QPO spectra for most of the observations. Since the total spectrum
is the spectrum of the outer disc and inner flow, and the QPO is the spectrum of
just the inner flow, we would expect the values of I" to be the same for each. QPO
spectra harder than the total spectra could be explained if the plasma heating rate is
modulating at the QPO frequency, while the cooling rate is not (Sobolewska & Zycki,
2006). However, this may also be due to the model. Despite fitting the data, the
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Figure 16: Fit to observation 6 using TBABSX(DISKBB -+ NTHCOMP -+ KD-
BLURXRFXCONVXNTHCOMP) for the total spectrum (black), and the QPO spectrum
with the normalisations of the blackbody and reflection set to zero (red). (Figure by C
Done, private email)

blackbody component to the total spectrum is very small, when we would expect it
to be much larger. Increasing the contrubution from the disc in the model would be
compensated by making the Compton component harder. In our model, we are simply
fitting the Iron line to a gaussian. A better model to use would be TBABS x (DISKBB +
NTHCOMP + KDBLURXRFXCONVXNTHCOMP), where RFXCONV models the reflection
features, and KDBLUR models the relativistic effects, smoothing the spectrum. This
model could not be used in the version of XSPEC we used. This model does produce the
expected blackbody component, with a Compton component roughly the same shape
as the QPO spectrum (figure 16).

5 Conclusions

For many decades, observations of black hole binary systems have revealed quasi-
periodic oscillations (QPOs) in the power spectra. Recently, a model has been pro-
posed which can provide a quantitative explanation for their origin. The accretion disc
is comprised of two components: the thin outer disc, and the hot, thick, inner flow. If
the inner flow is misaligned with the spin of the black hole, it can precess due to the
Lens Thirring effect, with is caused by relativistic frame dragging. The frequency of
the QPO depends on the size of this inner flow.

We analyse data taken with the Rossi X-ray Timing Explorer (RXTE) of the X-ray
source XTE J1550-564 during its outburst in 1998. We calculate the power spectral
density (PSD) for several observations during this outburst. The PSDs show a strong
QPO, initially at a low frequency of ~0.1 Hz, which rises up to a high frequency of ~10
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Hz, before decreasing in frequency again. Rms spectra, which show the variability as a
function of energy, are flat at low QPO frequencies, but rise with energy for higher QPO
frequencies. This shows that the source is transitioning from the low /hard state, where
the energy spectrum is dominated by a hard power law from the inner flow, through
an intermediate state into the very high state, where the spectrum has both a strong
blackbody component from the disc and a strong soft power law, then back into the
intermediate state.

Cross-spectra are calculated between the 2-3 keV and 8-13 keV energy bands, and
are used to determine the phase lags between the hard and soft photons. When the
QPO frequency is small, hard lags are seen at ~ 2 Hz, with soft lags at low and high
frequencies. For higher QPO frequencies, there are hard lags at low frequencies, and
soft lags at high frequencies, with peaks at the QPO and harmonic. The origin of
lags between the soft and hard photons can be explained by a propagating fluctuation
model.

The frequency resolved spectrum is computed for the X-ray source Cyg X-1, using
data from the RXTE with observation ID 10238-01-08-00 in the frequency bands 0.03-
0.05 Hz, 4.5-6.8 Hz, and 23-32 Hz. The low frequency band reveals a broad peak at
~ 6.4 keV, with a smeared absorption edge at ~ 7.1 keV. This is from the Iron Ko line,
and is produced from photons in the inner flow reflecting off the outer disc. Higher
frequency bands are harder, and show less reflection. High frequency fluctuations are
produced close to the black hole, where the photons are harder, as expected from the
propagating fluctuation model. The errors in our frequency resolved spectra are large,
since we only use one set of data. Using cross-spectral techniques would reduce these
errors, especially for the high frequency band, since uncorrelated white noise is removed.

Frequency resolved spectra are then calculated around the QPO frequency for the
same observations of XTE J1550-564 as before. We then fit a model to the time averaged
spectrum in XSPEC, which consists of a blackbody component, a Compton component,
and the reflection modelled as a Gaussian. We also fit a model consisting of just the
Compton component to the QPO spectra. For most observations, the QPO spectra
can be described well by a Compton power law. This supports the Lens Thirring
model of the QPOs, as the precessing inner flow produces only this Compton power
law, with no blackbody component. However, for some observations, this is not a good
fit, and may be due to reflection. We find that the fits to the time averaged spectra
lack the blackbody component, which is expected from the disc, and the Compton
component is much softer than for the QPO spectrum. This is due to our model. Using
a relativistically smeared reflection model, instead of the Gaussian, gives spectra which
do contain a blackbody component, with a Compton component the same shape as the
QPO spectrum.

This work could be extended by analysing more data, up to a higher energy, and
using this improved model. More data would help to constrain the parameters of the
model. Cross-spectral techniques could also be used to reduce the uncertainties in the
frequency resolved spectra.
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Appendix

Python code

power.py

Program which takes the Fourier transform, then plots the power spectrum
of a light curve

import numpy as N

import pylab as P

import scipy.integrate as I
import random as R

from scipy.stats import poisson

def

def

def

power_spectrum(intensity, timestep):

nmn

Function which calculates the power spectrum of a light curve,
returning arrays of the frequency and square of the Fourier
transform

nmn

power = abs(N.fft.fft(intensity))**2

freq = N.fft.fftfreq(len(intensity), timestep)

freq, power = positive(freq, power) # remove negative frequencies

return freq, power

positive(freq, power):

Returns an array of positive, non-zero frequencies and and array of
the corresponding power

i = abs((len(freq)+1)/2.) # index of first -ve value in freq array
return freq[1:i], power[1:i]

normalise(freq, fP, fP_noise, fP_err, intensity):

Function which normalises the power spectrum
nmn
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power = (fP + fP_noise) / freq

# integrate using scipy’s Simpson’s routine
integral = I.simps(power, x=freq)

sq_rms_var = squared_rms_variability(intensity)
norm_constant = sq_rms_var / integral

fP *= norm_constant
fP_err *= norm_constant

return fP, fP_err

def squared_rms_variability(intensity):
nmn
Function which calculates the squared total rms variability of
the light curve
I_0 = N.average(intensity)
sigma = N.std(intensity)

return (sigma/I_0)**2

def split_power_spectrum(time, intensity, delta_t):
nmn
Function which splits the light curve, finds the individual power
spectra, then averages them.
nnn
x = round(128./delta_t)
intensity = bin_128s(time, intensity, delta_t)
size = len(intensity) # length of total light curve

n_split = size / x
power = N.zeros(((x/2)-1)*n_split) # empty power array
intensity = intensity.reshape(n_split, x)

power.shape = (n_split, abs((x/2)-1))

for n in range(int(n_split)):
# calculate power spectra
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def

def

freq, power[n] = power_spectrum(intensity[n],delta_t)

# average seperate power spectra
fP, fP_error = average_power_spectrum(freq, power, size, n_split)

return freq, fP, fP_error

average_power_spectrum(freq, power, size, n_split):

nnn

Function which averages the power spectra and calculates the error

on the mean

nnn

fP = N.zeros(abs(((size/n_split)-1)/2)) # empty array of fP(f)
fP_error = N.zeros(abs(((size/n_split)-1)/2)) # empty array of errors

for i in range(len(fP)):
#average fP(f)
fP[i] = N.average(power[:,i]) * freq[i]

# error on the mean
fP_error[i] = N.std(power[:,i]l*freq[i])/N.sqrt(n_split)

return fP, fP_error

log_bin(freq, fP, error, bin_size):

nmn

Function which calculates the average frequency in logarithmic

frequency bins, returning arrays of frequency, fP(f) and the error

on the mean

nmn

log_freq = N.loglO(freq)

binned_freq = N.arange(round(log_freq[0],1) - bin_size/2.,
round(log_freq[len(log_freq)-1],1) + 1 + bin_size/2.,
bin_size) # array of frequency bins

# create empty arrays. index_list will contain indices of freqs to be deleted
binned_fP, fP_error, index_list = N.array([]), N.array([]), N.array([])

temp_index = 0 # index where previous iteration of loop stopped

for n in range(len(binned_freq)):
temp_fP = N.array([]) # temporary array of fP in freq bin
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def

def

for index in range(temp_index,len(fP)):
if log_freqlindex] > binned_freq[n] + bin_size/2.:
temp_index = index # save index for next iteration
break
if log_freqlindex] >= binned_freq[n] - bin_size/2.:
temp_fP = N.append(temp_fP, fP[index])
if len(temp_fP) ==
index_list = N.append(index_list, n)
else:
average_fP = N.average(temp_£fP)
binned_fP = N.append(binned_fP, average_fP)
sigma = N.std(temp_£fP)
# error on the mean
fP_error = N.append(fP_error, sigma/N.sqrt(float(len(temp_£fP))))

for e in range(len(fP_error)): # use original errors if 1 point in bin
if fP_error([e] ==
fP_error[e] = error(el

binned_freq = delete_freq(binned_freq, index_list)

return 10**xbinned_freq, binned_fP, fP_error

delete_freq(binned_freq, index_list):

Function which removes elements from binned_freq with indices in index_list

nmn

for index in index_list[::-1]: # reverse array
binned_freq = N.delete(binned_freq, index) # delete freq with no power

return binned_freq

noise(c_low, c_high, path):

Function which generates an array of poisson random numbers with
sigma=dI, and calculates the power spectrum

nmn

# total light curve

total_lc = N.loadtxt(path+c_low+’-’+c_high+’src.txt’, skiprows=3)
tot_t, tot_i = total_lc[:,0], total_lcl[:,2]

tot_dt = 2*total_lc[0,1]
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def

def

# background light curve
bg_lc = N.loadtxt(path+c_low+’-’+c_high+’bgd.txt’, skiprows=3)
bg_t, bg_i = bg_lc[:,0], bg_1lc[:,2]

N_tot_i = tot_i * tot_dt # total number of photons (source + background)
N_tot_av = N.average(N_tot_i)

N_bg_i = bg_i * tot_dt # number of background photons in same binning
N_bg_av = N.average(N_bg_i)

rand_tot = N.zeros(len(tot_i))

rand_bg = N.zeros(len(tot_i))

for i in range(len(tot_i)):
x = poisson.rvs(N_tot_av) # create random poisson numbers
y = poisson.rvs(N_bg_av)
rand_tot[i] = (x+y) / tot_dt

# calculate power spectrum
freq, tot_n_pow, tnp_err = split_power_spectrum(tot_t,rand_tot,tot_dt)

# logarithmic bins
freq, tot_noise_fP, tnpf_err = log_bin(freq, tot_n_pow, tnp_err, 0.05)

return freq, tot_noise_fP, tnpf_err

remove_white_noise(freq, fP, fP_error, noise_fP, nfP_error):

Function to remove the white noise from the power spectrum, and calculate

the total error
nmnn

new_fP = fP - noise_fP # subtract noise
new_fP_error = N.sqrt(fP_error**2 + nfP_error**2) # calculate error

return new_fP, new_fP_error

fractional_variability(freq, fP, fP_error, f_min, f_max):

Function to find the QPO fractional variability
nmn

# create array of fP(f) centred around QPO
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peak_fP, peak_freq, peak_err = N.array([]), N.array([]), N.array([])

for i in range(len(freq)):
if freq[i] > f_min and freq[i] < f_max:
peak_fP = N.append(peak_fP, fP[i])
peak_err = N.append(peak_err, fP_error[i])
peak_freq = N.append(peak_freq, N.loglO(freql[i]))

integral = I.simps(peak_fP, x=peak_freq) # integrate
integral _max = I.simps(peak_fP + peak_err, x=peak_freq)
integral _min = I.simps(peak_fP - peak_err, x=peak_freq)
errup = integral_max - integral

errdown = integral - integral_min

error = N.average((errup, errdown))

return integral, error

def split_cross(time_h, h, time_s, s, delta_t):
nnn
Function which splits two light curves, h and s, into n_split pieces,
then calculates the average cross spectrum
nmn
h
s

bin_128s(time_h, h, delta_t)
bin_128s(time_s, s, delta_t)

size = len(h)
x = round(128./delta_t)
n_split = size/x

# create empty arrays

C_real = N.zeros(((x/2)-1)*n_split)
C_imag = N.zeros(((x/2)-1)*n_split)

h = h.reshape(n_split, x)

s = s.reshape(n_split, x)

C_real.shape = (n_split, abs((x/2)-1))
C_imag.shape = (n_split, abs((x/2)-1))

for n in range(int(n_split)):
H = N.fft.fft(h[n]) # calculate Fourier transform
S = N.fft.fft(s[n])
H_freq = N.fft.fftfreq(len(h[n]), delta_t)
S_freq = N.fft.fftfreq(len(s[n]), delta_t)
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def

def

H_freq, H = positive(H_freq, H) # remove negative frequencies
S_freq, S = positive(S_freq, S)
C_real[n], C_imag[n] = cross(h[n], s[n], H, S, H_freq)

average_cross(C_real*H_freq)
average_cross(C_imag*H_freq)

Cf_real_av, Cf_real_err
Cf_imag_av, Cf_imag_err

return H_freq, Cf_real_av, Cf_real_err, Cf_imag av, Cf_imag_err

average_cross(C) :

nmn

Function which averages the real or imaginary parts of a cross spectrum.
C is a 2D array of height n_split

n_split, x = C.shape

C_av, C_err = N.array([]), N.array([]) # create empty arrays

for n in range(x):
C_av = N.append(C_av, N.average(C[:,n]))

# error on the mean
C_err = N.append(C_err, (N.std(C[:,n])/N.sqrt(n_split)))

return C_av, C_err

cross(h, s, H, S, freq):

mnn

Function to calculate the cross spectrum of the Fourier transforms of two
light curves, H and S

C = H.realxS.real + H.imag*S.imag + (H.real*S.imag - H.imag*S.real)*(0+1j)

# Normalise

integral = I.simps(C, x=freq)

s_rms_h = squared_rms_variability(h)

s_rms_s = squared_rms_variability(s)

N_const = N.sqrt(s_rms_h * s_rms_s) / integral

C = CxN_const
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return C.real, C.imag

def abs_cross(C_r, C_r_err, C_i, C_i_err):
nnn
Function which calculates |C| and its error from the real and imaginary
parts
C = N.sqrt(C_r**2 + C_ix*2)
err = N.sqrt((2*%C_r*C_r_err)**2 + (2xC_i*C_i_err)**2) / (2xC)

return C, err

def phase(C_r, C_r_err, C_i, C_i_err):
nmmn
Function which calculates the phase shift, and its error, from the
real and imaginary parts of a cross spectrum
x=C1/ C_r
delta = N.arctan(x)
error = x * N.sqrt((C_i_err/C_i)**2 + (C_r_err/C_r)**2) /(1 + x**2)

return delta, error

def bin_128s(time, light_curve, delta_t):
nmn
Function which creates 128 second bins, skipping over any gaps in the
data
i
x = round(128/delta_t)
binned_light_curve = N.array([])
i_temp = 0 # last index of previous iteration
while i_temp <= len(light_curve) - x:
append = True
for i in range(int(i_temp), int(i_temp+x-1)):
if time[i+1] - time[i] > 1.5%delta_t: # check for gap
i_temp = i+l
append = False
break

if append == True:
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def

def

binned_light_curve = N.append(binned_light_curve,
light_curve[i_temp:i_temp+x])
i_temp += x

return binned_light_curve

plot(freq, fP, fP_error):

Function which plots a logarithmic power spectrum
nmn

log_fP_error = fP_error / (N.log(10)*fP) # calculate log errors

P.figure()

P.errorbar(N.logl0(freq), N.loglO(fP), yerr=log_fP_error, ecolor=’black’)
P.xlabel(’log[Frequency (Hz)]’)

P.ylabel(’log[Frequency x Power (rms/mean)~2]°’)

P.show()

freq_dep_spec(intensity, fP, fP_err, freq, f_low, f_high):

Function which calculates the frequency resolved spectrum

Pow = fP / freq
Pow_err = fP_err / freq

powsnip = 0.0

error = 0.0

for i in range(len(freq)):

if freq[i] > f_low and freq[i] < f_high:

powsnip += Pow[i] * (freql[i]-freql[i-1])
x = Pow_err[i] * (freql[i]-freqli-1])
error += x**2

error = N.sqrt(error)

sqrt_err = N.sqrt(powsnip) * 0.5 * error / powsnip

f_var, err = fractional_variability(freq, fP, fP_err,
f_low, f_high)

return f_var, err
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def test_negative(fP):
for i in range(len(fP)):

if fP[i] < O:
# set fP to small, non-zero value
fP[i] = 1E-6
return fP

HHHHHHH A main program ###HHHAEHHE S

== "_ main__":

if __name_

path = ’data/data_30191-01-30-00/"
filename = ’rms5_30191-01-30-00_ch022-035_b256_1c.txt’

light_curve = N.loadtxt(path+filename, skiprows=3) # import data

time, intensity, i_error = light_curvel[:,0], light_curvel[:,2], light_curvel:,3]
delta_t = 2xlight_curve[0,1]

bin_width = 0.05 # width of log freq bins

# calculate power spectrun
freq, fP, fP_error = split_power_spectrum(time, intensity, delta_t)

# create log freq bins
freq, fP, fP_error = log_bin(freq, fP, fP_error, bin_width)

# calculate white noise

freq, noise_fP, noise_fP_err = noise(filename[22:25], filename[26:29],
’data/noise_30188-06-01-00/")

# remove white noise

fP, tot_err = remove_white_noise(freq, fP, fP_error, noise_fP,

noise_fP_err)

# normalise power spectrum
fP, fP_err = normalise(freq, fP, noise_fP, tot_err, intensity)

fP = test_negative(fP)

# plot
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plot(freq, fP, fP_err)
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Cross.py

Program to calculate the cross spectrum, phase lag, or time lag between

two
nmnn

light curves

import numpy as N
import power
import pylab as P

def

def

cross_spectrum(s_time, s, h_time, h, delta_t):

nmmn

Function which calculates and plots the cross spectrum between a hard, h

and soft, s, lightcurve

nmn

# calculate cross spectrum

freq, C_real, C_real_err, C_imag, C_imag_err = power.split_cross(h_time, h,
s_time, s,
delta_t)

# create log bins

f_bin, C_r, C_r_err = power.log_bin(freq, C_real, C_real_err, 0.05)

f_bin, C_i, C_i_err = power.log_bin(freq, C_imag, C_imag_err, 0.05)

Cf, err = power.abs_cross(C_r, C_r_err, C_i, C_i_err)

log_err = err / (Cf * N.log(10))

P.figure()

P.errorbar(N.logl0(f_bin), N.logl0(Cf), yerr=log_err, ecolor=’black’)
P.xlabel(’log[Frequency (Hz)]’)

P.ylabel(’log[Frequency x Cross Spectrum]’)

P.show()

return f_bin, Cf, err

lag(s_time, s, h_time, h, delta_t, time_lag=False):

nmmn

Function which calculates and plots the phase lag between a hard, h, and
soft, s, light curve. If time_lag = True, it converts this into a time
lag

# calculate cross spectrum
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freq, C_real, C_real_err, C_imag, C_imag_err = power.split_cross(h_time, h,
s_time, s,
delta_t)

# create log bins

f_bin, C_r, C_r_err = power.log_bin(freq, C_real, C_real_err, 0.05)

f_bin, C_i, C_i_err = power.log_bin(freq, C_imag, C_imag_err, 0.05)

x =01/ C_r
delta = N.arctan(x)
delta_err = x * N.sqrt((C_i_err/C_i)**2 + (C_r_err/C_r)**2) /(1 + x**2)

if time_lag == False: # plot phase lag
x = N.array([-2,2])
y = N.array([0,0])

P.figure()

P.errorbar(N.logl0(f_bin), delta, yerr=delta_err, ecolor=’black’)
P.plot(x,y, color=’black’, linestyle=’dashed’)
P.xlabel(’log[Frequency (Hz)]’)

P.ylabel(’Phase Lag (rad)’)

P.show()

if time_lag == True: # plot time lag
log_f_bin = N.logl0(f_bin)
log_f_err = log_f_bin[len(log_f_bin)-1] - log_f_bin[len(log_f_bin)-2]
f_bin_err = log_f_err * f_bin * N.log(10)

lag = delta / (2#N.pi*f_bin)
lag_err = lag*N.sqrt((delta_err/delta)**2 + (f_bin_err / f_bin)**2)

log_err = lag_err / (lag * N.log(10))

.figure()

.errorbar(N.logl0(f_bin), N.loglO(abs(lag)), yerr=log_err, ecolor=’black’)
.xlabel(’log[Frequency (Hz)]’)

.ylabel(’log[Time Lag (s)]’)

.show()

' ' 'u 'u 9

### main program ###

if

__name__ == "__main

n.

path = ’data/data_30188-06-11-00/"
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filenamel

’rms5_30188-06-11-00_ch000-007_b256_1c.txt’

filename2 = ’rms5_30188-06-11-00_ch022-035_b256_1c.txt’

light_curvel
light_curve2

s_time, s = light_curvell[:,0], light_curvell:,2]
h_time, h = light_curve2[:,0], light_curve2[:,2]

delta_t = 2*xlight_curvell[0,1]

cross_spectrum(s_time, s, h_time, h, delta_t)

41

N.loadtxt(path+filenamel, skiprows=3)
N.loadtxt(path+filename2, skiprows=3)



frs.py

Program which calculates the rms spectrum

import power as p
import numpy as N
import os

converter = N.loadtxt(’converter.txt’) # energy-channel conversion table
abs_chan, std2_chan, energy = converter[:,0], converter[:,1], converter[:,3]

S_E = N.array([]) # array of values of rms
S_E_err = N.array([]) # array of errors
single_bin = N.array([]) # array of energy bins

path = raw_input("path of data: ")

f_low = float(raw_input("low frequency: "))
f_high = float(raw_input("high frequency: "))
savename = ’rms_spectrum_’+path[10:24]+’ .txt’

listing = os.listdir(path)
for filename in listing:
print "current file is: " + filename
index_1 = N.where(abs_chan == float(filename[22:25]))
index_h = N.where(abs_chan == float(filename[26:29]))
bin_low = std2_chan[index_1][0] # convert abs channel numbers to std2
bin_high = std2_chan[index_h] [0]
bin_low = float(filename[22:25])
bin_high = float(filename[26:29])

n = bin_high - bin_low + 1
for i in range(int(n)):
# split into individual channels
single_bin = N.append(single_bin, bin_low + i)

light_curve = N.loadtxt(path+filename, skiprows=3)
time, intensity, i_error = light_curvel[:,0], light_curve[:,2], light_curvel:,3]

delta_t = 2xlight_curve[0,1] # time bin width
bin_width = 0.05 # width of log freq bins
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# calculate power spectrun
freq, fP, fP_error = p.split_power_spectrum(time, intensity, delta_t)

# create log freq bins
freq, fP, fP_error = p.log_bin(freq, fP, fP_error, bin_width)

# calculate white noise
freq, noise_fP, noise_fP_err = p.noise(filename[22:25], filename[26:29],
’noise_’+path[5:])

# remove white noise
fP, tot_err = p.remove_white_noise(freq, fP, fP_error, noise_fP,
noise_fP_err)

#normalise
fP, fP_error = p.normalise(freq, fP, noise_fP, tot_err, intensity)

fP = p.test_negative(fP)

# calculate frequency resolved spectrum
S, S_err = p.freq_dep_spec(intensity, fP, fP_error, freq, f_low, f_high)

for i in range(int(n)):
# if multiple energy channels, repeat same value for each channel
S_E = N.append(S_E, S)
S_E_err = N.append(S_E_err, S_err)

# save as a .txt file

data = N.zeros(3*len(S_E))

data.shape = (len(S_E),3)

datal:,0], datal:,1], datal:,2] = single_bin, S_E, S_E_err
N.savetxt(savename, data)

print ’saved as’, savename
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spectrum.py

Program which multiplies the rms spectrum by the count rate to

calculate the frequency resolved spectrum
nnn

import numpy as N
filename = raw_input("input filename: ")

# source count rate
source = N.loadtxt(’data/s_’+filename[:14]+’.txt’)
chan, scounts, serr = sourcel:,1], sourcel[:,2], sourcel:,3]

# background count rate
background = N.loadtxt(’data/b_’+filenamel[:14]+’.txt’)
bcounts, berr = background[:,2], backgroundl[:,3]

frs = N.loadtxt(filename)
chan2, rms, rmserr = frs[:,0], frs[:,1], frs[:,2]

totcounts = scounts - bcounts # total count rate
toterr = N.sqrt(serr**2 + berrx*2)

S = rms * totcounts[0:len(rms)]

S_err = S * N.sqrt((rmserr/rms)**2 + (toterr[0:len(rms)]/totcounts[0:len(rms)])**2)
data = N.zeros(3*len(chan2), dtype=’int32°’)

data.shape = (len(chan2),3)

datal:,0], datal:,1], datal:,2] = chan2, S, S_err

N.savetxt(’rms_’+filename, data)
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